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Abstract

Theoretical method to analyze three-layer large flattened mode (LFM) fibers is presented. The modal fields, including the fundamental
and higher order modes, and bending loss of the fiber are analyzed. The reason forming the different modal fields is explained and the
feasibility to filter out the higher order modes via bending to realize high power, high beam quality fiber laser is given. Comparisons are
made with the standard step-index fiber.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Output power of high power optical fiber laser is limited
by the onset of nonlinear effects, especially stimulated
Raman scattering [1]. A common approach for scaling
the power and pulse energy is to increase the core size of
the fiber and selectively excite only the fundamental mode
[2]. But there is an upper limit to the core diameter beyond
which single-mode operation is not guaranteed. At NAs
lower than 0.06, furthermore, fibers begin to exhibit extre-
mely high bend sensitivity, which imposes a practical lower
limit on NA and hence an upper limit on core diameter [3].
Fortunately, many ways have been found to suppress
higher-order lasing modes that allow designers to use even
larger core diameters wherein essentially multimode fibers
can be made to operate with a diffraction-limited beam
quality. These techniques include suitably manipulating
the fiber index and doping profiles [4,5], using special cavity
configurations [6,7], tapering the fiber ends [8], adjusting
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the seed launch conditions [9], and coiling the fiber to
induce substantial bend loss for all transverse modes other
than the fundamental [10].

The magnitude of nonlinearity in an optical fiber
depends on the nonlinear refractive index coefficient of
the fiber, the power in the optical fiber and the mode con-
finement. The effective nonlinear coefficient of a fiber can
be defined as nnl/Aeff, where nnl is the nonlinear refractive
index coefficient and Aeff is the effective core area. The non-
linear refractive index coefficient of a fiber depends on the
fiber material and as such, it is almost the same for all sil-
ica-based fibers. Thus the nonlinearity of the fiber can be
reduced by increasing Aeff. The large flattened mode
(LFM) optical fiber, firstly proposed by Ghatak in 1999,
has homogenous modal field in the central region [11].
The schematic of the refractive index profile of the fiber
is shown in Fig. 1, where n1, n2, n3 are the refractive indices
of the central dip, core and outer cladding and n2 > n1 > n3.
b, c are the size of the central dip and the core. The design
can increase the effective area effectively, which has been
discussed and demonstrated in Lawrence Livermore
National Laboratory [11,12].
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Fig. 1. Schematic of the refractive index profile of the three-layer LFM
fiber.
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The modal characteristics of the LFM fiber determine its
many important properties and bend-induced mode filter-
ing can get high beam quality easily, but there are few
papers concerned its modal and bending loss properties,
especially higher order modal fields. In the present paper,
we will discuss the modal characteristics and bending loss
properties of three-layer LFM fibers. The formulations
to analyze the LFM fibers are deduced in Section 2. In
Section 3, the properties of the modal field and bending
loss are studied and comparisons between conventional
fiber and LFM fiber are made. Finally, the main results
obtained in the paper are summarized.

2. Theoretical analysis

We assume low contrast between the refractive indices,
so the dominant modes are mostly linearly polarized; hence
all fields are derived from a scalar function w, which may
stand for the transverse-linearly polarized E field. The lon-
gitudinal modal propagation factor exp(�iwt � ibz) is
neglected in the discussion [13–16].

The refractive index profile analyzed in this paper is
shown in Fig. 1, which are named Type I and Type II,
respectively. In the analysis, b is the propagation constant
of the fiber and neff = b/k0, where k0 = 2p/k, k is the wave-
length. If n1 < neff < n2, we can get

w ¼
A1ImðarÞ cos m/; r < b;

½A2J mðprÞ þ A3Y mðprÞ� cos m/; b < r < c;

A4Kmða0rÞ cos m/; r > c;
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Ai (i = 1, 2, 3, 4) is constant. Jm, Ym are the Bessel func-
tions of order m, and Im, Km are the modified Bessel func-
tions of order m. For the other case, n3 < neff < n1, the
corresponding modal fields are

w ¼
B1J mða1rÞ cos m/; r < b;

½B2J mðprÞ þ B3Y mðprÞ� cos m/; b < r < c;

B4Kmða0rÞ cos m/; r > c;
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where a1 ¼ k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

1 � n2
eff

p
, Bi (i = 1, 2, 3, 4) are constant.

The boundary conditions at r = b and r = c require
merely the continuity of w and ow/or, so we can get
aI 0mðabÞJ mðpbÞ � pImðabÞJ 0mðpbÞ
aI 0mðabÞY mðpbÞ � pImðabÞY 0mðpbÞ

¼ � pJ 0mðpcÞKmða0cÞ � a0J mðpcÞK 0mða0cÞ
a0K 0mða0cÞY mðpcÞ � pKmða0cÞY 0mðpcÞ ; ð3Þ

a1J 0mða1bÞJ mðpbÞ � pJ mða1bÞJ 0mðpbÞ
a1J 0mða1bÞY mðpbÞ � pJ mða1bÞY 0mðpbÞ

¼ � pJ 0mðpcÞKmða0cÞ � a0J mðpcÞK 0mða0cÞ
a0K 0mða0cÞY mðpcÞ � pKmða0cÞY 0mðpcÞ : ð4Þ

Obviously, for the fundamental modal field absolutely
flat in the region |r| < b, we must have dw/dr = 0, neff = n1.
And thus the modal field distributions are

w ¼
C1; r < b;

C2J 0ðprÞ þ C3Y 0ðprÞ; b < r < c;

C4K0ða0rÞ; r > c;

8><
>: ð5Þ

where Ci (i = 1, 2, 3, 4) are constants and n1, n2, n3, b, c

must satisfy the following transcendental equation:

J 00ðpbÞ
Y 00ðpbÞ ¼ �

pJ 00ðpcÞK0ða0cÞ � a0J 0ðpcÞK 00ða0cÞ
a0K 00ða0cÞY 0ðpcÞ � pK0ða0cÞY 00ðpcÞ : ð6Þ

In calculating the bending loss, we used the method pre-
sented by Snyder and co-workers [14,17]. The fiber core
and inner claddings are substituted by an equivalent cur-
rent radiating as an antenna in an infinite medium of index
equal to nN, where nN is the refractive index of the most
external layer for an N-layer fiber. In this article, N = 3.
To a first approximation and using the Maxwell’s equation

r� H
*

¼ J
*

þjwe E
*

, it can be shown that the current density
of the equivalent radiating antenna is given by the follow-
ing expression:

J
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where E

*

ðrÞ is the exact electric field of the fiber, n(r) the
refractive index as a function of the radial coordinate, e0

the free space dielectric constant, and l0 is the free space
permeability. As an approximation, it is sufficient to as-
sume that this field is the same as the field of the straight
fiber, provided that the bending radius is large enough
compared with the fiber dimensions. The fiber is assumed
to be bent at a constant radius Rc. The current amplitude
Ico can be expressed as

Ico ¼ �j2pk0
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Following the steps of Snyder, the radiated power is ex-
pressed as
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where F rad ¼ 1
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the loss coefficient is calculated as
c ¼ P rad

2pRcPð0Þ
; ð10Þ

where Pð0Þ ¼ p
ffiffiffiffiffiffiffiffiffiffiffi
e0=l0

p R1
0

nðrÞjwðrÞj2r dr is the power car-
ried by the wave at the fiber input.
Fig. 2. Modal fields of the LFM fiber with (a) c
3. Results and discussions

The properties of large effective area of the LFM fiber,
facilitating lowering the nonlinear effect threshold, have
been discussed elsewhere [12]. In this paper, we will mainly
discuss its modal field and the bending loss numerically.
Considering LFM fibers with different core size c =
20 lm, 25 lm, and 50 lm, the corresponding central dip
sizes are 17.2862 lm, 22.3418 lm, and 47.4474 lm. The
= 20 lm; (b) c = 25 lm; and (c) c = 50 lm.



Fig. 3. Modal field comparisons between standard step-index and LFM
fiber.

Fig. 2 (continued)
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refractive indices can be chosen by using different materials
and n1 = 1.458, n2 = 1.459, and n3 = 1.457 in this cal-
culation [12]. The other parameters are k = 1.06 lm, A1 =
B1 = C1 = 1.

3.1. Modal fields

Fig. 2 shows the fundamental and higher order modal
fields with c = 20 lm, 25 lm, and 50 lm. It can be seen
clearly that increasing c makes the LFM fiber accommo-
date more modes. For the LFM fibers, light trace in the
core is quite different from that in a standard step-index
fiber. At the interface of central dip and the core, reflection
and refraction occur because the index of central dip is
lower than that of the core. Part of the light energy leaks
away from the central dip because total internal reflection
(TIR) is not satisfied. Energy redistribution takes place as
light propagates along the fiber. Finally, a stable homoge-
neous intensity distribution of the fundamental mode is
formed. For other modes with m = 0, the modal field
begins to oscillate and the intensity is not zero at the center.
With increasing modal order m(>0), the fields shift towards
the fiber border having no intensity in the center of the
fiber. The larger the m is, further away the modal field
shifts.

The LFM refractive index profile differs from the step-
index profile by the inclusion of a ring raised in refractive
above the inner core. To clarify the modal field character-
istics of LFM fiber, the discussed LFM fiber with
c = 25 lm and the step-index fiber with the same core size
and a flat refractive index of 1.458 across the entire core
are considered and comparisons are made, as shown in
Fig. 3. We plot the modal profiles of modes LP01, LP11,
LP21, and LP02 of the LFM and the standard step-index
fiber, respectively. It can be seen that the modal fields
of the LFM fiber have a much more obvious tendency
shifting towards fiber border than the step-index fiber.
The phenomenon correlates with the raised refractive
index ring of the LFM fiber.

3.2. Bending loss

The LFM fiber is an ideal candidate for the high power
fiber laser for its large effective area. With power scaling,
maintaining high beam quality is imperative, while bending
the fiber provides the easiest method to filter out the higher
order modes.



Fig. 5. Bending loss comparisons between standard step-index and LFM
fiber.

Fig. 4. Bending radius vs. bending loss for the LFM fibers with (a) c = 20 lm; (b) c = 25 lm; and (c) c = 50 lm.
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The four lowest order modes of the fiber are LP01, LP11,
LP21, and LP02. Fig. 4 shows the relationship of the bend-
ing loss of these four modes versus different bending radius.
Among these modes, LP02 mode has the largest bending
loss and LP01 mode suffers the smallest loss. Moreover, it
can be found that the bending loss decreases with increas-
ing bending radius. These results can be explained by Eqs.
(9) and (10) in Section 2. From Eq. (9) it is clear that the
closer is neff to n3, the higher will be the bending loss for
a fixed bending radius. For these modes, LP02 mode has
the smallest neff, which is the nearest one to n3, so it has
the largest bending loss. LP01 mode has the smallest loss
for it has the largest neff. Combining Eqs. (9) and (10), it
can be found that the bending loss decreases exponentially
with increasing bending radius. With core size increasing, it
is well known that the fiber can accommodate more modes
and the difference between modes becomes small [17], so
the bending loss difference between modes gets small, as
also can be understood from Eq. (9) and has been shown
in Fig. 4.

Bending loss comparisons are made between the LFM
and standard step-index fiber. The parameters used are
the same with Fig. 4. It can be seen from Fig. 5 that
the LP01 modes of the two fibers suffer nearly the same
bending loss, but for the higher order modes, the standard



Fig. 6. Calculated values of the LP11 suppression relative to LP01 versus c

at the indicated values of c01 = 1 dB/m.
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step-index fiber has larger bending loss than the LFM
one. These results result from the raised refractive index
ring of the LFM fiber, which makes the LFM fiber has
larger neff than the standard step-index fiber for the same
mode. Furthermore, different neff determines the different
bending loss. The difference between neff of LP01 modes
is small and therefore the two kinds of fibers have nearly
the same bending loss. For higher order modes, the LFM
fiber has much larger neff than the standard step-index one
for the same mode, so it has smaller bending loss. There-
fore, bend-induced mode filtering is more efficient for the
step-index fiber, but the LFM fiber outweighs the step-
index one by its much larger effective area.

Following the analysis in Ref. [10], we calculated the
bending loss for LP11 (c11) as a function of fiber core radius
for specified values of LP01 bending loss (c01) 1 dB/m, as
shown in Fig. 6. With the increasing core size, the LP11

suppression relative to LP01 becomes small for fiber with
large core size can hold more modes. If the core size is
small, bending the fiber can filter out the higher order
modes efficiently. If large, simply bending the fiber can
hardly get ideal filtering effect and we must adopt other
measures. If we assume that the loss difference of 1 dB/m
can discriminate LP11 from LP01, the ideal core size is bet-
ter less than 40 lm. The calculation provides a conservative
estimate of c11 relative to c01. For the influences of the rare
earth doping, we have not discussed here.
4. Conclusions

In the article, the properties of the LFM fiber, including
the fundamental and higher order modal fields, and bend-
ing loss are discussed by the theoretical method presented.
The reasons forming the different modal field is explained
by whether the TIR is satisfied. The feasibility to filter
out the higher order modes via bending is given. Compared
with the standard step-index fiber, the LFM one shows
more obvious shifting behavior towards fiber border for
its modal field and smaller bending loss for the higher order
modes. It also can be seen that bending the LFM fiber is an
efficient way to get good beam quality for the LFM fiber
with core size less than 40 lm in high power fiber laser
applications. For larger core size, we must adopt other
measures to get ideal beam quality.
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